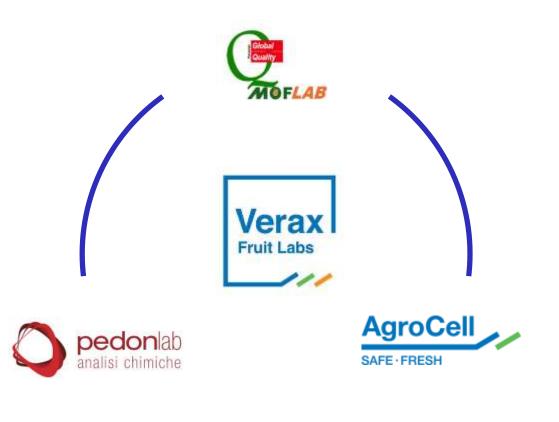


The importance of sampling in kiwi analysis


Seeds count & evaluation of pollination

Pollination of kiwi plants and fruit quality

Kiwi "Moria" research in Italy and how to prevent the problem

Agronomic analysis & correct development of fertilization and irrigation plans

Our Offerings

Leaf nutritional

Merceological analysis (D.M., Brix, Colour, Firmness &

Evaluation ot Irrigation water

Phytopatological analysis (fungi, bacteria, nematodes and virus)

Water retention curve

Chemicalphysical analysis of soil

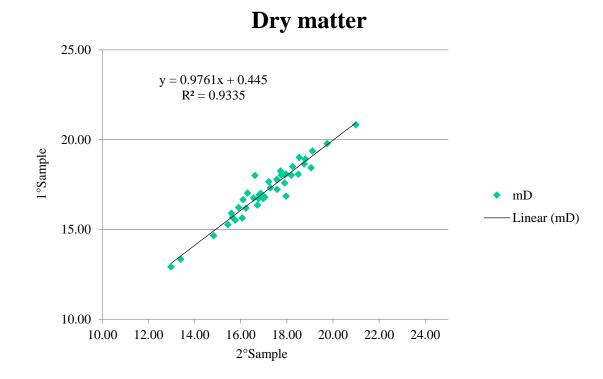
For all ripening areas, one sample must be taken for harvest authorisation, except for those with a large area where the collection of two or more samples is recommended. Generally, one sample every 2 ha is suggested.

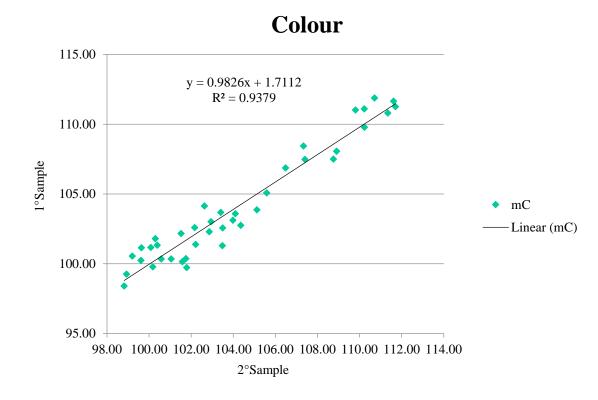
In the case of large areas and homogeneity of the orchard, the area can be extended to 4 ha. Select fruit from 30 randomised plants.(90 fruit)

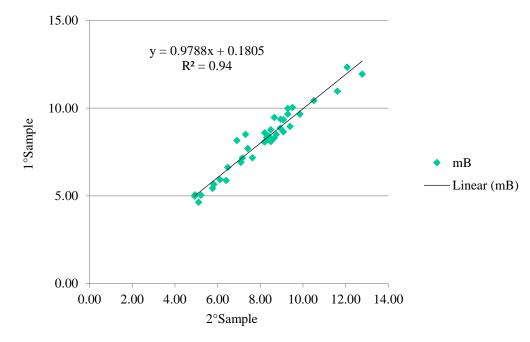
The selection of the plants should be based on a grid model to provide a good representation of the ripening area and the different blocks constituting it.

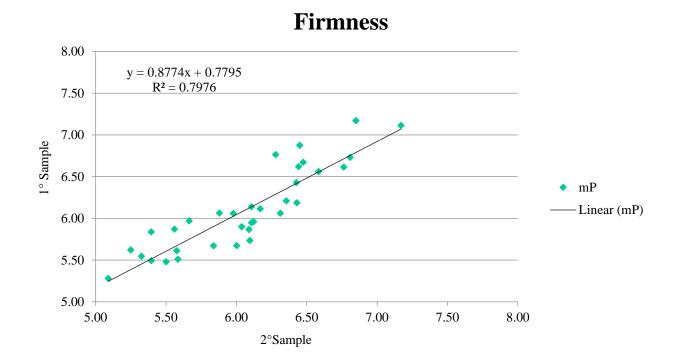
All blocks within the ripening area must be sampled. The selected fruit should be of class I quality and size standards. Fruit should not be picked from stressed, diseased or abnormal plants or from young plants replaced in the planting.

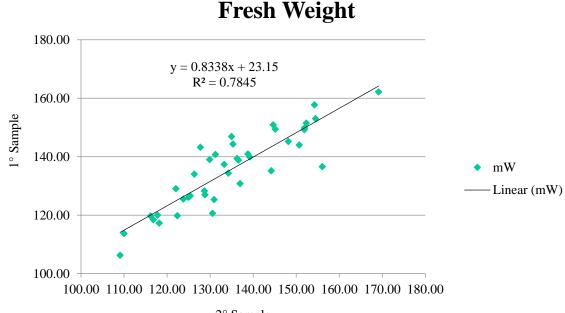

Sampling should only be carried out by personnel trained by the laboratory


Sampling of kiwi fruit should be made according to the following scheme. The sampler should go along the rows and select a certain number of plants and take a fruit near the trunk, one in the middle of the shoot and one at the end of shoot. That means 20 plants for each sample.








Brix

2° Sample

Method of Sampling for Pesticide Analysis of Kiwi Fruit (30 Fruits)

The Laboratory's experience in this field has enabled it to develop a standardized sampling and analysis system for destructive testing of kiwifruit.

Based on this knowledge, our facility has an important database with which to compare the analytical data collected.

The analysis supports producers and technicians in verifying <u>dry matter</u>, <u>brix</u>, <u>firmness and colour</u>, as some of these parameters are considered as evaluation indexes for the <u>final price of the product</u>. In addition, the information obtained makes it possible to assess the <u>correct timing for harvesting the final product</u>.

The laboratory guarantees robust and accurate analysis methods and highly specialized staff for sampling.

Importance of sampling

Method of sampling for Multiresidual analysis of Kiwi Fruit (30 Fruits)

In general, the sampling methods for the analysis of pesticides must guarantee their safety representativeness of the sample. The procedures adopted by the Laboratory are described below.

One of the problems relating to sampling for pesticide analysis due to the edge effect when other crops are adjacent. In this case the edges and one or two internal diagonal must be drown

The elementary samples will then be combined into the global sample.

The pieces must be placed in a clean container that ensures adequate protection during storage transport.

The overall sample can be reduced, to obtain a final sample, with the reduction method quarters (dividing the sample into quarters, discarding two opposite quarters and taking the remaining ones).

The final sample, if not too large, will coincide with the laboratory one and must consist of a minimum of 15 to a maximum of 30 pieces (1-3 kg).

Sampling should only be carried out by personnel trained by the laboratory

The importance of Multiresidual Analysis of kiwifruit or other fruit & vegetable

Multi-residue analysis is a complex analysis for the simple reason that the number of analytes (i.e. pesticide...) is very high.

This is because the origin of the samples to be analysed are not always the same: countries of origin and reference markets are extremely variable. All this determines the need to have a very high screening of p.a., including molecules that are no longer registered for use.

Such extensive screening serves to check for fraudulent use of active ingredients that are no longer authorised and to include in the analysis also products registered or used outside Europe.

The ability of the laboratory not only to apply the method (extraction by the QuEChERS method and determination in GC-MS/MS & LC-MS/MS), but also to obtain the results in the shortest possible time, providing the best answers from both a qualitative (recognition of the active ingredients present) and a quantitative point of view, is crucial.

The importance of seeds count Analysis of kiwifruit and evaluation of pollination

Through the specific analysis that involves counting the seeds of the fruit, it is possible to assess the quality of pollination.

The more seeds inside the fruit, the more effective pollination is.

Pollen Germinability

Pollination of kiwifruit and fruit quality

The pollination methods of Actinidia are different.

Pollination can take place either with dry pollen or with wet pollen.

In both cases, it is essential to know the quality of the pollen before use by carrying out a germinability analysis of pollen at 4h, 8h and 24h. Pollination can be carried out either by industrial mechanical means (fans and vaporisers) or by hand with tools that allow more targeted pollination.

In the second case, pollination can lead to better results; in fact, the better the pollination, the better the organoleptic and merceological qualities of the fruit (weight, dry matter, brix degree, colour, pressure)

Pollen Germinability

Pollination of kiwifruit and fruit quality

Our research experience in Italy 2019 - 2023

2019 Reporting the first cases of Moria (KVDS Kiwi Vine Decline Symptoms) in Lazio Bibliographic research and start of Pedonlab trials

2020 preliminary agronomic and phytopathological analysis, first tests of pathogenicity

2021 field trials on different rootstocks and data collection

2022 treatment and prevention strategies Publication of the article "Investigations into Kiwi Moria in Lazio"

2023 extend the protocol to other companies and other products. Moving from theses to experimental fields. Testing new rootstock types

CHARACTERISATION OF ORCHARDS

✓ Phytopathological analyses
 ✓ Soil analyses
 ✓ Water retention curve analysis
 ✓ Irrigation water analysis
 ✓ Leaves analysis Multi-residual analysis
 ✓ Merceological analysis

Evaluation of post-harvest root system:
✓ presence/absence of pathogens
✓ development of root capillitium
✓ yield of kiwifruits in kg for thesis

Multi Factor Approach

✓ Biofertility Study of Soil

✓ Correct Water Management

✓ Correct Plant Nutrition

✓ Correct agronomical practices

✓ Climate change

2020 - First year of experimentation

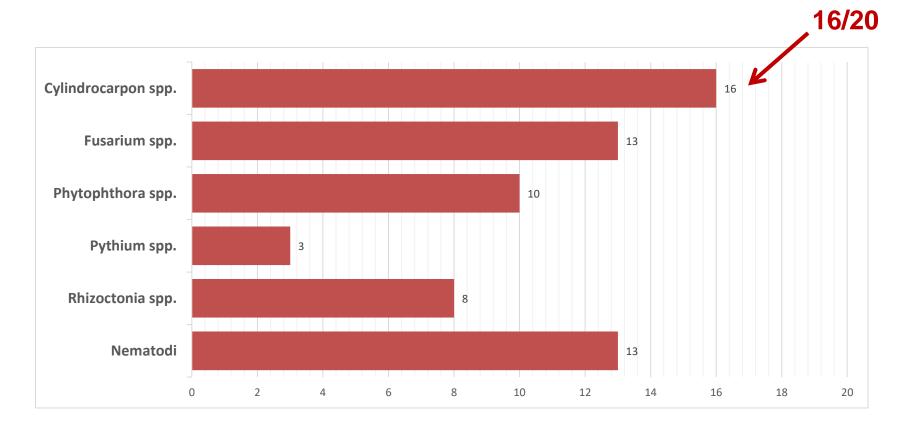
✓ The trial began in the year 2020 with the phyto pathological study of 20 orchards in the Lazio region.

✓ Ten plants for orchards were sampled.

✓ Fungal colonization in the root system was investigated

 ✓ 200 symptomatic root samples analyzed at the Pedonlab laboratory

Symptomatology


The most characteristic symptoms affect the root system, which presents:

- Bruising and necrosis
 of the xylem
- Progressive loss of the root capillitium hypertrophy and reddening of the cortical layer of the root branches
- Rot and detachment of the xylem cylinder

RESULTS OF PHYTOPATHOLOGICAL INVESTIGATIONS

COMMENTS

The above tab. shows that:

CYLINDROCARPON LIRIODENDRI is present in 80% of cases. Known pathogenicity on KIWI (Turkey) and VINE (Portugal and Italy)

The Laboratory has therefore decided to further investigate the presence of this pathogen while continuing its previous research into other pathogens that may contribute to the "KVDS", without forgetting the importance of correct plant nutrition, correct agronomic practices to be implemented and the climatic changes taking place.

CYLINDROCARPON LIRIODENDRI is pathogenic to Kiwi fruit (certified by the CREA research group in Rome, Dr Scortichini, Dr Pilotti and Dr Lumia)

The pathogenicity of the fungus has been tested and confirmed in greenhouse trials

CYLINDROCARPON LIRIODENDRI was isolated in Lazio in association with Kiwi plants affected by Moria

Replanting on infected soil is not recommended

d de norma par il vivaismo e la gostion el verde ambientale ed ornamentale

2021 SECOND YEAR

The HAYWARD rootstock is susceptible to CYLINDROCARPON LIRIODENDRI

the BOUNTY 71 rootstock is susceptible to the same pathogen, although it presents a different symptomatology

In view of the lack of tolerant plant material, the laboratory has planned an experiment for the year 2022/2023 to implement a treatment and prevention strategy for the problem of KDVS'.

2022 THIRD YEAR

20 products with different active ingredients were tested in vitro with 2D and 19 *CYLINDROCARPON LIRIODENDRI* isolates.

From the experimental evidence obtained from the in vitro tests, we moved on to the field intervention to evaluate the plants' response.

2022 THIRD YEAR: TRIAL ON FIELD

- Thesis 1 chemical fungicide application* (dose 125 ml per 100 liters)

* not authorised on kiwi fruit

Thesis 2 chemical fungicide application* (dose 250 ml per 100 liters)
 *not authorized on kiwifruit

- Thesis 3 application of chestnut tannin product (dose 5 L per 100 liters)

Thesis 4 control untreated volume applied per plant: 10 liters volume applied per hectare: 5000 liters

2022 THIRD YEAR: TRIAL ON FIELD

Application of treatments by means of an injector pole adjusting the pressure to 10 bar, the quantities injected are 10 L per plant for an application depth of 30 cm

period of application

1) first dose March - April

2) second dose early May

-appropriate agronomic management of the plant:

correct drainage, correct irrigation, adequate fertilization, treatments and fruit thinning

2022 THIRD YEAR: TRIAL ON FIELD

profondità di applicazione 30 cm

2022 THIRD YEAR: TRIAL ON FIELD

CONTROL

2022 THIRD YEAR: TRIAL ON FIELD

2022/2023 THIRD YEAR: TRIAL ON FIELD

AT THE END OF THE TWO-YEAR TRIAL PERIOD, THE RESULTS OBTAINED AND CONFIRMED BY THE EXPERIMENTAL EVIDENCE AND ANALYSES CARRIED OUT ARE:

- ✓ REDUCTION OF FUNGAL LOAD AFTER PRODUCT APPLICATION (AS PROTOCOL)
- ✓ RESTORATION OF THE ROOT SYSTEM, PARTICULARLY IF NEW CAPILLARIES ARE FORMED
- ✓ THE PLANTS IMPROVE THEIR VEGETATIVE PHASE WITHOUT EXPERIENCING PHYTOTOXICITY PROBLEMS

✓ INCREASED FRUIT PRODUCTION FOR PLANT (YIELD)

Moria

2022/2023 THIRD YEAR: TRIAL ON FIELD

FARMER	IDENTIFICATION	KIWI HORCHARD	NUMBER OF PLANTS	PRODUCTION Kg/plant TREATED	PRODUTION Kg/plant CONTROL	DIFFERENCE PLANT kg	DIFFERENCE Kg/ha	STATISTICAL SIGNIFICANCE
Antonetti_	parcellone	GREEN	20	68	41	27	13700	ОК
Lepidio D	doganella	GREEN	19	38	31	7	3300	ОК
Nadalet_	settore 4	YELLOW	16	94	83	10	5200	ОК
Bartoli_	Cisterna	YELLOW	24	42	28	14	6900	ОК
Lesti_	cisterna	GREEN	19	45	34	11	5300	ОК
Corbi_	Sermoneta	GREEN	21	67	57	11	5300	ОК
Ricotta_	Campo verde	GREEN	17	57	28	29	14300	ОК
Lepidio A_	via guardabassi	GREEN	15	61	32	29	14400	ОК
Teresi_	tenuta retarola	GREEN	20	86	82	4	2100	NO
Parcesepe	cisterna	GREEN	20	91	86	5	2500	NO

| 38

Soil Sampling Methods PED/EAQ

Exclude areas from the plot to be sampled that are abnormal in appearance (color, texture, skeleton, etc.) and agronomic history (crop diversity, treatments, fertilization, etc.) Exclude plot edges near ditches and from headlands.

It is essential that the sample consists of at least 20 elementary samples (sub-samples) taken at different points and carefully mixed.

Sampling points should be chosen by following a random path through the entire field. Always remove the grass before sampling (0-5 cm).

For herbaceous crops, a soil layer between 5 and 30 cm should be taken.

For tree crops, it is preferable to take two samples, one between 5 and 30 cm and the other between 30 and 60 cm, both to be sent to the laboratory.

In case of homogeneous soil, one soil sample should be taken for every 4 ha. In case of inhomogeneous soil, the area should be reduced depending on the degree of in homogeneity

Soil Sampling Methods PED/EAQ

Test report Archive code

cedoniac

Latina, Client code

SOIL TEST REPORT

CUSTOMER INFORMATION

Customer Address Postal Code Location Province

PICK-UP IDENTIFICATION PROVIDED BY THE PICKER

Identification field of actinidia Crop Impianto actinidia Ecological area Non specificata Soll type Non specificato

SAMPLING INFORMATION PROVIDED BY THE AMPLER

Sampler Cliente Sampling date 11/03/2024

RECEPTION INFORMATION

Arrival date 14/03/2024

ANALYTICAL TEST

Analysis start date 14/03/2024 Analysis end date 18/03/2024

Il Chimigo Anhlista Dott. Lorenzo Sbaraglia/ 10 Tese Li Corento

LAB Nº 17391

Note

This test separt telles to the sample delivered to the laboratory

this loss sport and party and he reproduced, even particily, without the vector approval of the Laboratory

- Records we would be to the restricter of the Laboratory for 4 years, and reports the 10 years
- the sample a stand in the bibantary fit at least 12 days after the top regist lies been issued

for sampling is not confined by ACCRIDIA They beer apport manipular on princhases

The compling data to per wind by the picker. The Laboretry to not expendelse the compling of performed by a third party. In fact case, the county reflector field on picker.

HdP stampeto il 18/65/2024 / 11/44

Madalo 98 Rappento di prova Rav 1 del 12/06/2022

perionality of a sorial union - partial webbodice feates 022423380590 - was distanted?**1409600 - cavitalle sociale 6:10,000,00

Soil Sampling Methods PED/EAQ

pedoniab

Test report:

Latina,

PARAMETER

PARAMETER		U.M.	VALUES		U (+/-)	Loq	MLP.
Gravel			0010111100				Minip (marks)
Sand (2.0-0.020 mm)		5	54				SR 13 NO LLAW 32 ALM OF ADDR 32 UP 1444 Not 32 A
silt (0,020-0,002			16				2012-00-1200 10 1100 10 1000 11-11-1000 Juni 12 4
Clay (<0.002 mm)		4	30				THE LEVEL DAYS AND ADDRESS OF MARK ADDRESS AND SHEET TO A
TEXTURE			FAS				faires.
Reaction (112.5)		pH	8,3				on isomorphic at any in war store that Per 222 s
El. Conduct. (112.0)		m5/cm	0,451				DE LEVEN CETE AL ALAS AN ALLES ALLES AND Des 1912
Total Carbonate		- h.	7,8				THE LAY DE LANS OF LASS OF ADAR 21-10-1000
Active calcium carbonate			2,3				28.11.00(200 07.618) 87.6148.21111108 (80 7.1
Organic matter		8	1,47		-		THE LEVEL COME BE MORE THE MORE STUDIED AND NEW YORK STUDIED AND NEW STUDIED AND NEW YORK STU
Total Nitrogen	(35)	- h.	0,093				THE LEVEL DISC OF ALL ST ALL ALL AND THE ALL ALL AND THE ALL ALL AND ALL ALL AND ALL ALL ALL ALL AND ALL ALL ALL ALL ALL ALL ALL ALL ALL AL
Avail. Phosphorus	(P)	ppm	50				20137/00/2019 20 walk 20 wine 21/20/2019 Sec 2013
IRCE ADD.	(Fe)	ppm	15,6				THE LEVEL CONTRACT OF A DESCRIPTION OF A
MANGANESE ann.	(Hn)	ppm	9,2	*			28 12-16-2546 ST KLAP AF MARE 21-16-2646 Bet 322-1
COPPER ass.	(Cu)	ppm	2,4				- 18 14 18 12 19 20 10 10 10 10 10 10 10 10 10 10 10 10 10
ZINC ass.	(En)	ppm	1,8				104 (10.10) (100 AC w) W CC -6234 (10.10) (101 (100 AC w) W CC -6234 (101 AC w) W
BORD sol.	(B)	ppm	0,46				38.13-01-1398.30 and 40 alar 11-13-1599 946-037.5
Exch. Calcium	(Ca)	ppm	3700	*			Second Johnson
Exch. Negnesium	(Hg)	ppm.	360				10-12 A.V 2014
Exch. Potassium	(25)	hinu	340				18-0 8.4 JUL
Each. Sodium	(1in)	ppm	41				10151-014-0147
C.E.C. per 100 g		meg	22,55	*			Bench Letters
CALCIUM		5	82,0				240miler
MAGRESIUM		- B-	13,3	*			Falmela
POTASSIUM		N	3,9				Televier
NUIDO		. 0.	0,8	*			(a)colo
SATURATION BASIC		5	100,0	1			Paintin
C/N Batio			9,17				Decimile

Note t.

CSC.

- \$7.54 - Unit of Measurement
 - ~ Extended Uncertainty (99% Confidence Internal, 8+2)
- 342 + Test Method
- . = Nim-accordined terr Long - Limit of Quantification
- Coad elst "Electrical conductivity
- Avanabable -
- Tenes
- - Exchangeable

- Catom Enchange Capacity

BdP stampsto il 18/03/2024 / 11:44

Modulo 96 Rapporto di prova Rev 1 del 12/06/2022 pedoniali el a socio unico - partita iva/codios facale 02408390596 - rea di latina nº 175959 - capitale accese € 10.000.00

Soil Sampling Methods PED/EAQ

withorney to a call the management to a rest of the rest of the state of the second state of the second state of

OPINIONS AND INTERPRETATIONS NOT SUBJECT TO ACCREDITATION BY ACCREDIA

pedor

Latina, 18/03/2024

ttisched to RdP n.	Farmer	PEDONLAB	Sample Id.	new orchard of actinidia
2402032	Address	1	Sampling	:11/03/2024
	C.A.P.	:02600	Crop	Impianto actinidia
Soll report	Locality	BELGIO	Area	Non specificata
ARC00304	Province	ESTERO	Soil	:Non specificato

PHYSICAL CHEMICAL PROPERTIES

Parameter		ter Value		Evaluation	Parameter	Parameter Value		Evaluation
Gravel			SEN	sensitive	Reaction (112.5)	рH	8,3	med alkaline
sand	12.0-0.02	4	54		E1. Conduct. (1:2.0)	m\$/cm	0,451	normal
Silt	(0.020-0		16		Total Carbonate	. 4	7,8	leg. calcureous
Clay	1<0.002	*	30		Active calcium carbo		2,3	medium
TEXTURE			FAS	loam clay sandy	Organic matter		1,47	low

NUTRIENTS STATUS

Parameter		Value Evaluation			Parameter			ae .	Evaluation		
Total Mit	rogen	00		0,093	Low	BORD	201.	(8)	ppn	0,46	Low
Avail. Ph	osphore	us (F	ppos	50	v. high	Exch.	Calcium	(Ca)	ppm	3700	v. high
IRON	355.	(19)	ppm	15,6	medium	Exch.	Magnesium	(39g)	ppm	360	v. high
MANGAMESE	455.	(htn)	ppot	9,2	medium	Exch.	Potassium	(30)	ppm	340	v. high
COPPES	ass.	(Cu)	ppn	2,4	medium	Exch.	Sodium	(Ba)	ppm	41	normal
TINC		(Zn)	ppm	1.8	medium				822		

CATION EXCHANGE CAPACITY

Parameter	Value x100gr		Saturation %	Evaluation	
C.E.C.	neq	22,55	and the second sec	high	
CALCIUM	neq	18,50	82,0	high	
MAGNESIUM	merg	3,00	13,3	high	
POTASSIUM	neq	0,87	3,9	average	
MUTCH	net	0,18	0,8	normal	
SATURATION BA			100,0	high	
Mg/K		3,45		medium	

BdP stampts d. 10/05/2024 11:44

Module 90 Rapporto di porva Rev 1 del 12/06/2022

Pag. 1/3

pedonibat a solo vice - ratio lasterira funda 024060000 - mais latera o respect - codo condo e racioto

Soil Sampling Methods PED/EAQ

pedonlab analisi chimiche

OPINIONS AND INTERPRETATIONS NOT SUBJECT TO ACCREDITATION BY ACCREDIA

Latina, 18/03/2024

Note to the report	Farmer	PEDONLAB	Sample Id.	inew orchard of actinidia	
2402032	Daddress :		Sampling	:11/03/2024	
	C.A.P.	:02600	Crop	:Impianto actinidia	
Soil test report	Locality	:BELGIO	Area	:Non specificata	
ARC00304	Province	:ESTERO	Soft	:Non specificato	

AGRONOMICAL REPORT

TEXTURE	The soil has a sandy clay loam texture with a significant presence of skeleton; the hydropedological characteristics deducible from the texture (moderate permeability and good water retention capacity), are significantly high
Reaction	The soil has a medium alkaline pH reaction, unsatisfactory for the culture.
COND. elettrica	The soil salinity level is normal.
Total Carbonate	The soil is slightly calcareous.
Active calcium	The level of active limestone is medium; the choice of the rootstock is a limiting element, which must be done in a critical way.
Organic matter	The organic fraction of the soil is low; the microbial activity, the physical-structural characteristics and the chemical fertility are negatively affected. The contribution of organic matter is recommended.
Total Nitrogen	Total nitrogen is low; its contribution to the nitrogenous nutrition of the crop is modest.
Avail.	The level of phosphorus is very high; the response to the element is highly unlikely. Phosphorus is not needed.
IRON	The assimilable iron level is normal.
MANGANESE	The level of assimilable manganese is normal.

HdP stampate il 18/03/2624 11:44

Pig.23

Soil Sampling Methods PED/EAQ

pedoniab valorem, 12/1+04013 Minuscab (3)+140

va cartani, 12/s+04013 lalina scalo I.31 • M0.773631892 • Iax 0773558040 • introllipedonials. I • www.pedonials. I

OPINIONS AND INTERPRETATIONS NOT SUBJECT TO ACCREDITATION BY ACCREDIA

Latina, 18/03/2024

Note to the report	Farmer	PEDONLAB	Sample Id.	inew orchard of actinidia
2402032	Daddress	2	Sampling	:11/03/2024
	C.A.P.	:02600	Crop	:Impianto actinidia
Soil test report	Locality	:BELGIO	Area	:Non specificata
ARC00304	Province	ESTERO	Soft	:Non specificato

AGRONOMICAL REPORT

TEXTURE	The soil has a sandy clay loam texture with a significant presence of skeleton; the hydropedological characteristics deducible from the texture (moderate permeability and good water retention capacity), are significantly high
Reaction	The soil has a medium alkaline pH reaction, unsatisfactory for the culture.
COND. elettrica	The soil salinity level is normal.
Total Carbonate	The soil is slightly calcareous.
Active calcium	The level of active limestone is medium; the choice of the rootstock is a limiting element, which must be done in a critical way.
Organic matter	The organic fraction of the soil is low; the microbial activity, the physical-structural characteristics and the chemical fertility are negatively affected. The contribution of organic matter is recommended.
Total Nitrogen	Total nitrogen is low; its contribution to the nitrogenous nutrition of the crop is modest.
Avail.	The level of phosphorus is very high; the response to the element is highly unlikely. Phosphorus is not needed.
IRON	The assimilable iron level is normal.
MANGANESE	The level of assimilable manganese is normal.

BdP stampate il 18/03/2824 31:44

Medulo 36 Rapporto di prova Rev.0 del 17/09/2018

Ptg. 201

Soil Sampling Methods PED/EAQ

2	pedon
~	analisi chimi

OPINIONS AND INTERPRETATIONS NOT SUBJECT TO ACCREDITATION BY ACCREDIA

Latina, 18/03/2024

Note to the report	Farmer	PEDONLAB		:new orchard of actinidia
2402032	Daddress	4	Sampling	:11/03/2024
	C.A.P.	:02600	Crop	:Impianto actinidia
Soil test report	Locality	:BELGIO	Area	:Non specificata
ARC00304	Province	:ESTERO	Soil	:Non specificato

COPPER	The assimilable copper level is normal.
ZINC	The level of assimilable zinc is normal.
BORO	Assimilable boron level is low; element response may be probable. Boron intake is recommended.
Exch.	The calcium level is high both in absolute value and in relation to the CSC. The response to the element is not probable.
Exch.	The level of magnesium is high both in absolute value and in relation to the CSC; the response to the item is not probable. Magnesium is not needed.
Exch.	The potassium level is very high in absolute value but appears to be average in relation to the CSC; the response to the element is highly unlikely. Potassium is not needed.
Exch.	The sodium level is normal both in absolute value and in relation to the CSC. Negative effects on the culture are completely unlikely.
C.E.C.	The cation exchange capacity is high; the amount of mutrients retained in cationic form is high.

HdP stampets 8 : 18/05/2024 11:44

Ptg 3/3

Methods of Sampling for Irrigation Water Analysis (chemical and microbiological analysis) ASCC/PMM

Material

- 1. Sterile 500 ml plastic bottle (with thiosulfate in case of chlorinator implantation) PMM
- 2. Chemical analysis bottle (plastic) ASCC
- 3. Portable refrigerator .

Sampling method microbiological analysis

- 4. remove rubber hoses and plastic filters
- 5. run water for 5 minutes if used often

6. run the water for about 15 minutes if it has not been used for a long time close the tap 7. sterilize the tap with a flame (use gas lantern or cotton ball soaked in alcohol) and reopen the tap. Let the water run for another 2 minutes . Take the sample with the sterile bottle taking care to open and close it as quickly as possible

Sampling method chemical analysis

8. draw water for chemical analysis(ASCC), after rinsing the container with the same water to be analyzed

Methods of Sampling for **Irrigation Water Analysis**

	pedo	
-	AURILI CH	

Archive Code:

Latina, 28/06/2023 Test Report:

CUSTOMER INFORMATION

Customer
Address
Postal Code
Location
Province

IRRIGATION WATER

Culture Not specified Substrate Not specified Cultivation Not specified

SAMPLING IDENTIFICATION movimients in means

Identification IRRIGATION WATER Sampling point EARL FKJ Body of water Not specified Treatment Not specified Sample appearance

SAMPLING INFORMATION PROVIDED BY THE SAMPLER

Sampler Client Sampling date 26/06/2023 Sampling hour Temperature (°C) Sampling rates 01

RECEPTION INFORMATION

Check-in date 28/06/2023 Time of arrival Temperature ("C)

ANALYTICAL TEST

Analysis start date 28/06/2023 Analysis end date 28/06/2023

EdP stargate il 25/06/2025 / One

Madde #18+ 8 4019122018

Pig 10

podoniub ar a socio unico • partita instructivo facase 02436380586 • rea di altra nº 175059 • capitale accisite E 10.000.00

Methods of Sampling for Irrigation Water Analysis

Archive Code:

Test Report:

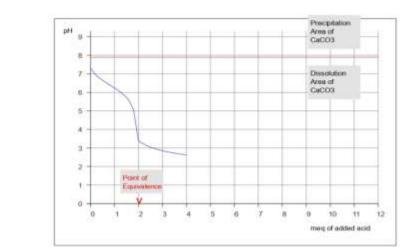
CHEMICAL PARAMETERS

PARAMETER	UM	VALUE	•	UM	VALUE	TEST METHOD
Suspended solids	mg/I	0				APAT CNR 858, 2090 Mar 29 2003
Hydrogen concentration	pH	7,30				APAT ONR IRSA. 2060 Maii 29 2003
Electrical conductivity at 25°C	mS/cm	0,227				APAT OWN BISA 2030 Mar 29 2003
Dissolved salts	mg/1	145				Metado interno PAME LOUT
Calcium (Ca) (C) mg/l	36		mmoli/1	0,90	UNI EN ISO 116852509
Magnesium (Mg) (Mg	0 mg/1	3		mmoli/1	0,12	UNFER150 118852009
Sodium (Na) (N	i) mg/1	5	L	mmoli/1	0,22	UNPEN150 11885 2009
Potassium (K) ()	0 mg/l	2		mmoli/l	0,05	UNFEN150 11885 2009
Carbonates (CO3) (CO3) mg/1	0	•	mmoli/I	0,00	APAT OWR IFISA 2010 8 Mart 28/2003
Bicarbonates (HCO3) (HCO3	0 mg/l	116	•	mmoli/I	1,90	APAT CNR IRSA 2010 B Mar 29/2003
Chlorides (Cl) (C	li mg/l	6		mmoli/1	0,17	UN/EN/00 10/04-1 2000
Sulfates (S/SO4) (S/SO4)	0 mg/l	4		mmoti/1	0,12	UNI EN ISD 10304-1 2009
Ammoniacal Nitrogen (N/NH4) (N/NH	i) mg/t	< 0,5	•	mmoli/i	< 0,04	APAT CNR JRGA 4030 8 Mar 29 2003
Nitric Nitrogen (N/NO3) (N/NO)	0 mg/1	1		mmoli/1	0,07	UN/EV/SO 10304-1-2000
Nitrous Nitrogen (N/NO2) (N/NO2	9 mg/1	< 0,1		mmoli/l	< 0,01	UN/EN/ISD 10304-1-2009
Phosphoras (P/H2PO4) (P/H2PO	i) mg/l	< 0,2	6	mmoli/l	< 0,01	UNITEN ISO 10304-1-2009
Iron (Fe) (F	e) mg/l	0,08	8	µmoli/1	1,43	UNI EN ISO 11885.2009
Manganese (Mn) (Mi	i) mg/l	< 0,01		µmoli/1	< 0.18	UN EN ISO 11885 2009
Copper (Cu) (Ci	a) mg/l	< 0,01		µmoli/1	< 0,16	UNI EN 150 11885 2009
Zinc (Zn) (Zi	mg/t	< 0,01		µmoli/1	< 0,15	UNLEN ISO 118852009
Boron (B) (F	0 mg/1	0,01	•	µmoli/1	0,93	UNI EN ISO 118852999
Molybdenum (Mb) (Me) mg/l	< 0,010	•	µmoli/1	< 0,10	UN/EN/00 / 1885/2009

Notes - UM: Use of Mecoursets * Man accedited tool

LAB M" LODGE

Bull* Starrpote # 2006/2023/16-45


Modulo 93 B

Mohdo 95 Bay 0 del 1912/2018

Fag 32

TITRATION CURVE

CORRECTION WITH MITRIC ACID 65,0 %

meg of added acid	mi of	NITROGEN CONTRIBUTED PER					
	acid permc	5 mic (N gr)	100 mc (N Kg)	1000 mc (N Kg)	2500 mc (N Kg)	5000 mc (N Kg)	
1	70	14	1,4	14,0	35,0	70,0	
2	140	28	2,8	28,0	70,0	140,0	
.3	210	42	4,2	42,0	105,0	210,0	
4	280	56	5,6	56,0	140,0	280,0	

FRIEBH

AgroCell

Water Sampling

Methods of Sampling for Irrigation Water Analysis

Elaborazione PEDON ITALIA

Methods of Sampling for Irrigation Water Analysis

CORRECTION WITH PHOSPHORIC ACID: 85,0 %

meg of	rel cat		BUTED PER			
added	per mc	1.mc (P.gr)	100 me (P Kg)	1000 mc (P Kg)	2500 mc (P Kg)	5000 mc (P Kg)
1	68	31	3,1	31,0	77,5	155,0
2	136	62	6,2	62,0	155,0	310,0
3	204	93	0,3	93,0	232,5	465,0
4	272	124	12,4	124.0	310.0	620.0

CORRECTION WITH SULFUR ACID 95.0 %

meg of	ml of		SULFL	IR CONTRIBUT	WITRIBUTED PER	
added	per mic	1 mc (5 gr)	100 mc (5 Kg)	1000 mc (S Kg)	2500 mc (S Kg)	5000 mc (S Kg)
1	28	16	1,6	16,0	40,0	80,0
2	56	32	3,2	32,0	80,0	160,0
3	-84	48	4,8	48,0	120,0	240,0
- 4	112	64	6.4	64,0	160,0	320.0

Elaborazione PEDON ITALIA.

Leaf Sampling

Sampling for Leaves Nutritional Analysis - FCC

1. take a sample for each type of kiwifruit

example G3 - Hayward - Soreli, you cannot make a single analysis on different varieties, each variety represents a sample to be analyzed in the laboratory.

2. identify the plot of interest. you can also do one sample per plot if it is not larger than two hectares, otherwise it is advisable to divide the plot in two and do a double analysis

3. once the variety and plot to be analyzed have been identified, sampling is done diagonally across the rows, avoiding taking leaves on the perimeter plants. The choice of leaves to be analyzed should fall on mature young leaves taken at mid-shoot (therefore, apical leaves or those close to the trunk should be avoided)

4. the sample to be sent to the laboratory should consist of a minimum of 30 leaves (if the leaves are large) to a maximum of 50 leaves (if the leaves are small)

Archive code :

Test report:

Leaf Sampling

AgroCell

Sampling for Leaves Nutritional Analysis-FCC

CUSTOMER INFORMATION

carmer	
Address	
C.A.P	
ocation	
rovince	

LEAF ANALYSIS

Sample SCEA JAPIENOU BD Crop Actinidia Gold Phenological phase Month September Plant organ Leaf Blade

INFORMATION ON SAMPLING

Sampler Client Sampling date 12/10/2023

ANALITICAL TEST

Start analysis date 12/10/2023 End analysis date 16/10/2023

Note

This test report refers to the sample delivered to the laboratory

This report may not be reproduced, even partially, without the written approval of the laboratory.
 The recordings are available to the continues in the laboratory for 2 years, the test reports for 10 years.

The sample is kept in the laboratory for at least 7 days after the issue of the test report.

BdP statepate il 17/10/2023/ 09:40

Modulo 103 Rapporto di prova Rev.0 dei 17/09/2018

Peg.1/2

pedoniab

Archive code :

Test report:

Leaf Sampling

PARAMETERS

Sampling for Leaves Nutritional Analysis-FCC

PARAMETER		ARAMETER U.M. VALUES OF		OPTIMAL RANGE	AGRONOMICAL EVALUATION	
Nitrogen	(N)	%	1,60	1,31 - 1,80	Medium	
Phosphorus	(P)	96	0,12	0,16 - 0,25	Low	
Potassium	(K)	%	0,95	1,01 - 1,50	Low	
Calcium	(Ca)	96	4,73	2,51 - 4,00	High	
Magnesium	(Mg)	96	0,61	0,31 - 0,50	High	
Sodium	(Na)	%	0,02	0,02 - 0,04	Medium	
Iron	(Fe)	ppm	54	51 - 110	Medium	
Manganese	(Mn)	ppm	39	51 - 150	Low	
Copper	(Cu)	ppm	10	9 - 13	Medium	
Zinc	(Zn)	ppm	15	21 - 30	Low	
Boron	(B)	ppm	21	31 - 45	Low	

----- End of test report -----

Note

U.M. unt of measurement

Test methods

- Nittingen determination according to Kjendin

-Chloring incineration, extraction as beding water, determination by B

- Other element Acid mineralization and determination By ICP OE

MdP stampoto il 1713/0/2023 / 09:40

Module 103 Rapporto di prova Reviti del 17/09/2018

Fig. 32.

Plant Sampling

Method of sampling plant material (for phytopathological analysis) - FITO

The sampler should preferably take those plants showing the symptoms deemed abnormal at an early stage; the sample should contain both healthy and diseased parts.

It is very important to accompany the samples with all information regarding: - cultivar - rootstock - age and origin of the plant - occurrence and extent of symptoms - crops previously present - distribution of diseased plants in the field (isolated episodes, in patches, in rows, at the edges, etc.).

In all those cases where sample delivery cannot be done on the same day, it is of paramount importance to store it in a refrigerator at 4-5 °C.

Storage should not exceed 2-4 days. Never store in the freezer. Use closed plastic bags for storage; avoid wrapping samples with paper or cloth.

Contact the laboratory before delivering samples.

Soil Analysis

The importance of agronomic soil analysis

The objective of agronomic soil analysis is to provide the technician/client with the basic knowledge for a correct understanding of the fundamental chemical-physical parameters of soils and the elaboration of fertilization plans

Our analytical report guarantees a clear and direct approach to the problems inherent in soil fertilization, focusing interest on the most suitable lines of action, transferring to the technician the necessary basis for operating incisively and safely

When to do the analysis:

before a new crop planting to assess the most suitable crop or the best rootstock

before drawing up a proper fertilization plan

Analysis The importance of irrigation water analysis

Evaluation of the most important chemical parameters according to the agronomic technique adopted (potted crops, open field irrigation, hydroponic crops) :

- evaluation of the risks of occlusion in irrigation systems
- the bicarbonate titration curve

- the correct processing of nutrient solutions (for calculating nutrient solutions and their corrections during the growing cycle)

Our report provides the technician/customer with the necessary information to be able to optimally manage the water resource

When to do the analysis: Always !!! At least once a year...

Leaf Analysis

The importance of leaves analysis

Evaluation of the nutritional status of crops by analyzing leaf macro-meso-micro nutrients :

Our analytical report provides technicians/clients, regardless of individual specific knowledge, with the necessary information for a critical assessment of agronomic problems such as deficiencies or phytotoxicity and their overcoming.

The guidelines for the interpretation of analyses are a simple and practical support for the agronomic evaluation of the analytical certificate

When to do the analysis:

1.the manifestation of specific problems such as deficiencies or phytotoxicity

2. during the growing cycle before harvesting for proper agronomic management of the plant

Analysis The importance of Phytopathological Analysis

Phytopathology, or Plant Pathology, is the science that studies plant diseases (or phytopathologies). More specifically, it deals with how they occur, their causes, the favourable or unfavourable conditions for their development, the means by which they propagate and the ways to eradicate or prevent them.

In Phytopathology, the fundamental concepts are those of disease, symptom and pathogen. Specifically, disease is a "condition of persistent suffering, resulting from an alteration of the plant's normal physiological processes" (Belli, 2014) and is manifested through symptoms, which negatively affect the plant's development and productivity. These diseases are determined by pathogens, disease-causing agents (viruses, bacteria, fungi, phytoplasmas), which infect the tissues of a host plant and manifest themselves externally through symptoms.

Obviously, measures to combat and control these diseases are also analyzed in this field, as well as preventive methods

